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Abstract. We study an integrable two-leg spin-1/2 ladder with an XYZ-type rung interaction. The exact
rung states and rung energies are obtained for the anisotropic rung coupling in the presence of a magnetic
field. The magnetic properties are analyzed at both zero and finite temperatures via the thermodynamic
Bethe ansatz and the high-temperature expansion. According to different couplings in the anisotropic
rung interaction, there are two cases in which a gap opens, where the ground state involves one or two
components in the absence of a magnetic field. We obtain the analytic expressions of all critical fields
for the field-induced quantum phase transitions (QPT). The anisotropic rung interaction leads to such
effects as separated magnetizations and susceptibilities in different directions, lowered inflection points,

and remnant weak variation of the magnetization after the last QPT.

PACS. 75.10.Jm Quantized spin models — 75.30.Kz Magnetic phase boundaries (including magnetic
transitions, metamagnetism, etc.) — 75.40.Cx Static properties (order parameter, static susceptibility, heat

capacities, critical exponents, etc.)

1 Introduction

Recently the quasi-one-dimensional spin ladder has at-
tracted much interest, both experimentally and theoreti-
cally [1]. More and more ladder-structure compounds have
been realized, such as SrCuz03 [2], Cuz(C5H12N2)2Cly [3],
(5IAP)2CuBry-2H20 [4], (C5H12N)2CuBry [5], and so
forth. Although many ladder compounds can be well de-
scribed by simple isotropic ladders, the structural distor-
tion and the spin-orbit interaction of the transition ions
can lead to various magnetic anisotropies. Besides the
spin-orbit interaction, both the on-site Coulomb exchange
interaction [6,7] and the nonlocal Coulomb interaction [8]
can also influence the anisotropy. The anisotropic inter-
action from bond buckling has been recently found in
copper-oxide ladder compounds CaCuzO3 [9] due to an
angle deviation from 180° in the Cu-O-Cu bond [9-11].
An anisotropic rung interaction was considered in refer-
ences [12,13] motivated by CaCuyO3 [9], and a two-leg
spin ladder with an XXZ-rung interaction was derived
in the presence of the Dzyaloshinskii-Moriya interaction
and the Kaplan-Shekhtman-Entin- Wohlman-Aharony
interactions. When the Cu-O-Cu bond is near 90°,
the rung interaction is weak in the copper-oxide lad-
der. Spin anisotropy in the exchange interaction also
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exists in strongly-coupled ladder compounds such as
(pipdH)2CuBry [14]. On the other hand, real spin lad-
der compounds are usually described by the standard
Heisenberg ladder model, which is not exactly soluble,
thus turning the computation of the physical properties
for the ground state (GS), the gap, the thermodynamical
quantities and other relevant properties in the presence
of temperature and magnetic fields, rather difficult. The
theoretical methods that are usually applied are numeri-
cal ones [15-17], as well as perturbation expansions [18],
bosonization [19] and mapping into the XXZ Heisenberg
chain [20] in strong-coupling limit. Recently it was shown
that the integrable isotropic spin ladder model [21] can
be used to describe the properties of strongly-coupled
spin ladder compounds [22-24]. Therefore, it can be ex-
pected that integrable ladders with anisotropic rung inter-
actions can provide some meaningful information about
the physics of anisotropies. The bulk leg part of the
two-leg spin-1/2 integrable spin ladder [21] is the SU(4)
model [25,26]. For the spin-orbit system, various break-
ings of the SU(4) symmetry were analyzed in the presence
of detailed phase diagrams [27], together with some inter-
esting five-consecutive field-induced quantum phase tran-
sitions (QPT), as well as magnetization plateaus arising
from different Landé g factors and the one-site anisotropy,
as revealed in a globally-analytic phase diagram [28]. For
the ladder case, the XXZ anisotropic rung interaction in



68 The European Physical Journal B

the presence of an external field in the z-direction was
embedded in the SU(4) bulk leg part in reference [13],
and some phase diagrams for the GS were obtained. For
a more general XYZ anisotropic rung interaction, new
physics can be expected as the additional anisotropy in
the x- and y-directions from the XYZ rung coupling will
break the linear field dependence of the Zeeman energy in
the isotropic or XXZ anisotropic case. To our knowledge,
the explicit solutions in different anisotropic directions, in
the absence and presence of the field, field-induced QPT’s
and the detailed magnetic properties for the GS and at
finite temperatures, have not yet been addressed for the
general XYZ anisotropic case.

In the present paper we shall consider the anisotropy
in the rung interaction and the corresponding magnetic
anisotropy effect by solving an integrable spin ladder with
a general XYZ rung interaction. By means of the thermo-
dynamical Bethe ansatz (TBA) [23,26-30] and the high
temperature expansion (HTE) [22,31,32], we investigate
the influence of the anisotropic rung interaction on the
QPT’s and the magnetic properties. The contents are ar-
ranged as follows: (i) in Section 2 we present the model
and the exact rung-state basis in the presence of a mag-
netic field. The model is then solved by the Bethe ansatz
(BA) approach. (ii) Section 3 gives the TBA equations for
the GS and the HTE of the physical properties at finite
temperatures. (iii) In Section 4, we study the field-induced
QPT’s. The rung anisotropy provides two kinds of gapped
ladders, with one and two components in the GS. The an-
alytic expressions are obtained for all the critical fields of
the corresponding QPT’s. The rung anisotropy also leads
to a separation of the magnetizations and susceptibilities
in different directions. The magnetization inflection point
(IP) may be lowered from the half-saturation, and in the
two-component gapped ladder, the IP is not even invari-
ant under different temperatures. A remnant variation of
magnetization can be found after the last QPT. In Sec-
tion 5 we give a summary of our results.

2 The model, exact rung states
and BA solution

We shall consider a spin-1/2 two-leg spin ladder model
with a general XYZ-type anisotropy in the rung interac-
tion, whose Hamiltonian reads

H="Ho+Hxyz+ M,

L
Ho=Jo Y Prita,
=1
Hxvz = O (JoSPTE + J,SYTY + J.SFTF),

3

M= —gH > (S; +1T7), (1)

where S and T are the spin operators for the two
legs, and g is the Landé g factor in the direction of

the field. The bulk part Hy with the permutation op-
erator Pi,i-{-l = (251 . Si+1 + %)(QTZ . Ti+1 + %), exhibits
the SU(4) symmetry [25]. Isotropic integrable spin lad-
ders [21] have identical rung interactions J, = J, = J, =
J. For real spin ladder compounds, we shall denote the real
average leg interaction by J, and the anisotropic rung in-
teractions by JT, JY, J%. For the isotropic case, a scaling
parameter v &~ 4 in the leg interaction Jo = J) /7 fits the
leading terms of the gap [23] for strong-coupling spin lad-
ders in the presence of a weak rung interaction. Another
set of parameters (Jo = J /v, J = J1L + aJ)) were intro-
duced, and by minimizing the effect of the biquadratic leg
interaction, the deduced parameters v ~ 8/3, a ~ 1/2 give
the leading terms of both the gap and the fully-polarized
critical point of real compounds [24]. In the discussed
anisotropic case, defining

Jo=Jy/v, Lo =J] +aJdy (v=12y,2) (2)

with adjustable v and «, may also be helpful in under-
standing real compounds. In the present paper we shall
discuss the general solution and effect of the anisotropic
Jy.

When the rung interaction is strong, it is favorable
for the spin ladder system to form rung states since the
leg interaction is too weak to take apart the rung states.
Anisotropy in the rung interaction leads to the collapse of
the conventional singlet and triplet rung states from the
isotropic ladder, even in the absence of the field. However,
we find a new exact basis, valid both in the absence and
presence of an external magnetic field as such:

wﬁﬁﬂmﬂm>m=%mwwm

=t [T1) +nlld)
Y3 = —F———=—

= —_— 3
T2 — P4 T2 2 (3)

where

i Aol + OGP+ (L — T,

T 4)

The corresponding rung energies then include the Zeeman
energy in a nonlinear way,

1

1
By = 3ot Jy = ),

1 1

— 2 - _ 2 _
E4¢@Hﬁ+iﬁljﬁ+lj. (5)
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The rung states {¢;, | ¢« = 1,---,4} provide a
new fundamental representation of the SU(4) Lie alge-
bra S}'¢; = dpipm, with commutation relations of the
generators [S7,SL] = 6,15l — 6m,1SP. Based on this
SU(4) realization and the vanishing commutation rela-
tions [Hxyz,Ho| = [M,Ho] = 0, one can solve the
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model (1) via the BA approach [33]. The BA equations
are the same as those obtained for the SU(4) model [26]
and for the SU(3)®U(1) spin ladder [21]. Here we present
the BA equations together with the eigenenergy

MF M+ ME=1
= k,k+1 = k,k—1
- H =1 :u‘]7 H ‘—‘%(M_]'rn ) H “%(:u’], )ﬂ
m=1 m=1 m=1
M

=—J Z omay (i) + ZE Ni,  (6)

where El(uffn) = (k; W) — m)/(,u;k) — 1)+ i),
p? = 0,M© = L,M<4> =0,and 1 <k < 3; an(p) =
[n/(u? +n?/4)]/(27). There are L rungs, N; is the total
number of rung states ¢;, and ,u;k is the rapidity. M*) is
the total rapidity number in the k’th branch.

From the BA equations and the eigenenergy we can
apply the TBA and HTE to study the collective proper-
ties of the model. When the field is applied in the z- or
y-direction, one only needs to permute the anisotropy pa-
rameter values {J,Jy, J;} as well as the corresponding
g factors. We incorporate g into the field unit when plot-
ting figures in order to investigate the net effect of the
anisotropic rung interaction. For a powder sample, one
simply takes an average over the three directions.

3 TBA and HTE

By adopting the string conjectures [34] and by applying
the Yang-Yang method [29] at the thermodynamic limit,
one can obtain the GS equations for three dressed ener-
gies €(?) [23,27,28,30],

() — g(i) —agx e fay % (e(i—l)— + €(i+1)—> , (7))

where €9 = ¢4 = 0 and the symbol * denotes the con-
volution. The basis order is chosen as (¢p, op,0opr,0p,)7,
where P; € {1,2,3,4}, and @p, is energetically the most
favorable state, while @p, is the least favorable one. For
the chosen order, the driving term is given by ¢(? =
(Ep,,, —Ep,)/Jo—0;12ma1. The GS is composed of Fermi

i1
seas filled by negative ¢V~ If some branch of the dressed
energy is all positive, then the corresponding excitations
to this branch is gapped. A QPT occurs at the point where
the gap is closed. We shall apply these TBA equations to
analyze the field-induced QPT for the GS.

For the finite temperature case the TBA involves
an infinite number of coupled integral equations. In the
present paper we shall apply the HTE [22,31,32] from T-
system [35] within the Quantum Transfer Matrix formal-
ism [36], which involves only a finite number of integral
equations, and consequently is more convenient. Following
references [22,31,32], one can obtain the free energy f per
rung at high temperatures. Here we present the first four

terms which dominate the physics for high temperatures:

Jo Jo Jo
= —T —_—
f <00+C1(T)+02(T) +C3(T)>
(8)
where T is the temperature, and the coefficients are

2Q 30 6Q% 3Q_

CO:IHQ-H CIZQ_iv C2:Q_3__Q—i+Q—i,
Cn 10Q 18Q% 80Q3 8Q-_ - 24QQ- N 4
T3 Qf T30 QY Qb Qv

with the following definitions

@ = 2cosh <%BJZ) + 4 cosh <£6Jx+y) cosh(Bh),

1
Q+ = 2(EBT=/4) (osh (Zﬁjﬂy) + 2¢(FBI=/4) cosh(fh),

h=\/(gH)? + Jp—y?/16, Jyiy = Jo £ J, and 3 = 1/T.
One can get higher orders for lower temperatures. The
magnetization and the susceptibility can be easily ob-
tained by M = —9f/0H, x = OM/OH. If the rung Jy
is weak, then the HTE gives a valid result even for low
temperatures due to the large rescaling . In the isotropic
case, v = 4 [23] fits the leading order terms of the gap,
while v = 5 was also used in reference [22] for fitting some
compound. In reference [24], v =~ 8/3 together with a new
parameter « = 1/2 were determined by minimizing the
effect of the biquadratic leg interaction.

4 Phase transitions and magnetic properties
4.1 One-component gapped ladder

For different anisotropies, there are two different gapped
ladders. In one case, only one component ¢ exists in the
gapped GS when H = 0. In the other case, both ¢; and
o are involved in the gapped GS. First we discuss the
former case which happens to be more likely. It requires
that

Jo+ Js — | Jo — Jy| > 160, (9)
Jo + Jy > 8Jo, (10)

where J3 = J, + J, + J,. Condition (9) expels the com-
ponents 3 and ¢4 from the GS, while condition (10) ex-
cludes the component 5. The field will bring 3 down to
the ground state and close the gap A = min{Es, E5, E4} —
FEy — 4Jy at a critical field H.;, which leads to the first
QPT. Further increase of the field will bring all com-
ponents of ¢1 out of the GS and another gap A =
FEy— E3—4Jy opens at the critical field H.o, which charac-
terizes another QPT. The factor 4.Jy in the gap comes from
the maximum depth of the first dressed energy branch. It
is easy to see that only the components ¢; and @3 com-
pete in the GS (which involves one branch of the dressed
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Fig. 1. Magnetization versus magnetic field at zero temper-
ature for the one-component gapped ladder with a weakly-
anisotropic rung interaction, J, = 32Jo, J, = 36Jo, J. = 42Jy.
From the rescaling v &~ 4 [23] or v ~ 8/3,a =~ 1/2 [24] in (2),
the ratio of real leg (J)) and rung (J.) couplings for com-
pounds will be of the order JH/JL ~ 0.1. M is the satura-
tion magnetization. In the gapped phase H < H.i, only one
component, 1, exists in the ground state. In order to study
the net effect of the anisotropic rung interaction, we incorpo-
rate the g factor into the field. The weak anisotropy in the
rung separates the magnetization in different directions. The
zero temperature magnetization is obtained from the thermo-
dynamic Bethe ansatz (TBA). Also, for comparison with the
finite temperature case, a magnetization at T = 2.Jy obtained
from the high-temperature expansion (HTE) is presented in
the z-direction.

energy), since the GS only consists of ¢; in the absence of
the field, while only 3 is lowered in energy when the field
is applied. The analytic expressions of two critical fields
can be obtained exactly as

1
H. = E\/JZJ;; + Ty + 6402 — 8 (. + Js),

1
Ha = @\/szg + Jody +64J3 +8Jo (J. + J3).  (11)

In the above expressions, setting J? = J, and v = 8/3,
a, = 1/2 (for all v = z,y,2) from (2) recovers the re-
sult of isotropic case in reference [24] with the two critical
fields gH.y = J1 — Jj and gHeo = J1 + 2J) , which are
the leading terms of the two critical fields of the isotropic
spin ladder compounds [3,20,37-39]. A weak anisotropy
will lead to different critical fields and consequently sepa-
rate the magnetizations in different directions. We give an
example of the magnetization with weak anisotropy in Fig-
ure 1 (a low-temperature magnetization is presented for
comparison in the z-direction). The corresponding low-
temperature magnetizations for all three directions are
presented in Figure 2, as obtained from the HTE. As an
example, magnetizations in different directions for strong

T R — X =
oy T=2J, e
z b
s
c ,r"/
S )
= Fl
8
% 05 ]
S S
g /
v"”‘//
"("//
s
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0 ,‘,r:"‘{/ I L
4 12 20 28

Magnetic field gH/2 (unit: J,)

Fig. 2. Magnetization versus magnetic field for T' = 2.Jy for
the one-component gapped ladder with the weak anisotropy,
Jr = 32Jo, Jy = 36Jo, J. = 42Jy. The magnetizations are
obtained from the HTE, which coincides with the magneti-
zation separation in the zero temperature case obtained from
the TBA.

anisotropy are shown in Figure 3 for the GS and in Fig-
ure 4 for a low temperature.

Before the gap is closed at H.1, the gap A near H.y
can be expanded to a simpler form

A%cl (HclfH), (12)

where ¢; = gQHcl/\/(chl)2 + 15(Jz — Jyy)?. Consider-
able excitations can be stimulated by the temperature 7' if
T is of the order of the gap T' ~ (H.1 — H), and the magne-
tization will rise from zero before the field reaches the crit-
ical point. An expansion based on small Fermi points [23]

gives the zero-temperature critical behavior in the vicinity
of Hcl

1

(%) 2 (047, 2 [ 01 = ) 2

Here (M?), is the magnetization of a single rung state s,
which also varies with the field due to the anisotropic rung
interaction, as we will discuss below in (18). For the lowest
order in the critical behavior, (M?), takes the value at the
critical point Hei. This M?* o (H — H,)'/? critical be-
havior, typical for gapped integer spin antiferromagnetic
chains [40], is buried by the afore-mentioned temperature
effect. This temperature effect can be seen in Figure 5,
where the magnetization along the z-direction at T' = 2J
becomes considerable at the field H = H.; —2Jy. Actually,
the magnetization at T" = 2Jy increases almost linearly
before H.;.

A special point in the magnetization is the inflection
point (IP) H;p, which is an invariant point at low tem-
peratures, given by

(13)

gHp = 2\ (4 L)+ ), (14)
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Fig. 3. Magnetization versus magnetic field at zero temper-
ature for the one-component gapped ladder with a strongly-
anisotropic rung interaction, J, = 12Jy, Jy = 60Jo, J. = 24Jy.
The strong anisotropy leads to a strong separation of the mag-
netization. The inflection point (IP) is lowered from the half
saturation. A finite temperature magnetization from HTE is
presented in order to demonstrate the IP. Note that the mag-
netizations do not reach the saturation after the second quan-
tum phase transition at H.2, and there still remains a weak
variation of the magnetizations. This remnant magnetization
variation comes from the single-state magnetization M3 of o3
which is a mixture of full-polarized states |11) and the lowest-
magnetized state || |). The variation of M3 is illustrated by the
long-dashed line for the whole process of the field application.

where the two components ; and 3 have the same rung
energies Iy = FE3 and the same proportion N; = N3 in
the GS. The excitations for ¢ and @4 are gapped, and
the gap can be obtained exactly from (7), giving

Arp = min{Arpa, Arpa},
A]pg = (Jx + Jy)/2 - (2 1112)J0,
Arps = (JZ+J3)/27(211’12)J0 (15)
At low temperatures, the excitations for s or ¢4 are diffi-
cult to stimulate, while the temperature does not influence
the relative proportion between ¢; and ¢3 due to their
similar energies at the IP. Consequently the proportions
of ¢1 and 3 remain almost unchanged when the tem-
perature varies. Therefore the magnetization at H;p also
remains invariant when the temperatures changes, and the
magnetization curves at various temperatures cross each
other at the same point M;p, as shown by the curves for
temperatures T = 0, 2Jp, 3Jy and 4Jy in Figure 5. This
requires low temperatures

T < AIP) (16)
as well as the gapped ladder conditions (9) and (10), where
App is the excitation gap for ¢q or ¢4 in (15). When the
temperature is sufficiently high such that the excitations
to @9 or 4 are considerable, the involvement of these com-

©
(6]
T

Magnetization M/M,

0 8 T 24 32
Magnetic field gH/2 (unit: J,))

Fig. 4. Magnetizations versus magnetic field for different di-
rections at finite temperature for the one-component gapped
ladder with the strong anisotropy, J. = 12Jy, J, = 60Jo,
J. =24Jp.

o
(&)
T

Magnetization M/M

0 o1 16 24 40
Magnetic field gH/2 (unit: J,)

Fig. 5. Magnetization versus magnetic field at different tem-
peratures for the strongly-anisotropic rung, J, = 12Jo, Jy =
60Jo, J. = 24Jy. Low temperature magnetizations at 1T' = 0,
2Jo, 3Jo and 4Jy cross the inflection point (IP). Higher-
temperature magnetizations at 7' = 20.Jp and 40.Jy do not go
through the IP, since the gap of excitation for ¢2 is overcome
by the temperature stimulation.

ponents reduces the proportion of @3 which has the high-
est magnetization. The components ¢2 and ¢4 have zero
and negative magnetizations, respectively. As a result, the
magnetization at H;p deviates from M;p and move down-
wards. We show this motion by using the magnetization
curves at temperatures T = 20Jy, 40Jy in Figure 5, for
which one can compare with observation examples such
as Cuz(C5H12N32)2Cly [3], and also from the TMRG nu-
merical result for the Heisenberg ladder [16].
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The magnetization at the IP can be worked out as
follows

_ 9 Hip? + HIPHS;)
2HE? + HipHYY

z
1P

(17)

where H}Jlg) = VH?p+ (Jo — Jy)?/(49)%. For the

isotropic ladder H};) = Hyp, and consequently M7, is
located at the half of the saturation magnetization M7 =
g [22]. The anisotropy lowers the magnetization of the IP

due to the fact that H};) > Hrp, ie. Mfp/MZ < 1/2.
Physically, the anisotropy in the z,y-directions hybridizes
the elemental state ||]) into @3 such that ¢3 is not a pure
fully-polarized elemental state |17) as in the isotropic case.
For the XXZ-type rung interaction, M7 is half-saturated
when the field is oriented in the z-direction, while low-
ered when the field is applied in other directions. This IP
lowering effect is more obvious for the strong anisotropic
case, we give an example in Figure 3. As one can see from
this figure, besides the strong separation of the magneti-
zation in different directions, the IP points in the z- and
z-directions move below the half saturation point.

In addition to the separation of the magnetizations
in different directions, and the lowering of the inflection
points, another property in the anisotropic case is the rem-
nant variation of the magnetization after the second phase
transition. The fact that the magnetization increases be-
tween H.; and H.e comes mainly from the proportional
competition between the two state ¢; and 3, i.e., more
rungs are occupied by ¢s when the field increases. The
single-rung magnetization in state 3 can be obtained ex-
plicitly as

z _ 772 -1
A e (18)
where 7 increases with the field according to the expres-
sion (4). The long-dashed line in Figure 3 gives an ex-
ample of (M?), in the z direction, which increases from
zero at the beginning of the application of the magnetic
field. If H.; is small, then the increment of (M?), also
makes an important contribution to the growth of the
magnetization. Otherwise, for higher H,.;, the change of
(M?), contributes less to the growth of the total magneti-
zation, since (M?), has decelerated before the first quan-
tum phase transition occurs. However, the competition be-
tween ; and 3 comes to an end after the second QPT,
and the magnetization is given completely by (M?),. This
gives a remnant variation of magnetization even after the
second QPT, since (M?), is still approaching the satura-
tion limit. This remnant variation of the magnetization is
illustrated for the GS in Figure 3 and can also be seen for

the temperature variant case (Fig. 4).

Examples of the magnetic susceptibility in the three
directions are plotted in Figure 6 for weakly anisotropic
rungs, and in Figure 7 for strongly anisotropic rungs.
Weak anisotropy separates the heights of the magnetic
susceptibility peaks, while a strong anisotropy leads to an
obvious separation of the whole susceptibility, including
the peak positions.

0.2

©
o
o

Magnetic susceptibility ¥
o

0.05 -

j

i
O l}/ L L
0 40 80 120
Temperature T (unit: J;)

Fig. 6. Magnetic susceptibility against temperature for dif-
ferent directions in the weakly-anisotropic case, J, = 32Jo,
Jy = 36Jo, J. = 42Jy. The weak anisotropy separates the
heights of the susceptibility peaks. In order to see the net ef-
fect of the rung anisotropy, we plot the figures using the same
g factors for the three directions.

0.3

0.2

Magnetic susceptibility

0 j H . I I
0 40 80
Temperature T (unit: J;)

120

Fig. 7. Magnetic susceptibility versus temperature for the
strongly-anisotropic case, J, = 12Jy, Jy = 60Jo, J. = 24Jp.
The strong anisotropy separates not only the peak heights, but
also the whole shape including the peak positions.

4.2 Two-component gapped ladder

The anisotropy in the rung interaction provides another
possibility of a gapped ladder, in which not only the rung
state (1, but also ¢y are involved in the GS before the
field brings about the first QPT. The single-state energy
difference is Ey — By = (J + Jy)/2. The larger the differ-
ence, the more p; and @9 expel each other in the Fermi
sea. The two-component gapped ladder requires that

| T 4 Jy| < 8J0, (19)
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such that 1 and g are close enough in energy to exist in
the GS at the same time, in the absence of the field. Also, a
strong J, is needed to expel 3 and ¢, from the gapped GS
before the field is applied, with the approximate condition
that

(Jo + Jy)?

2
87T2J0 ( 0)

T > Al + S|~ J, +
For simplicity, we assume J, +J, > 0 so that ¢ has lower
energy than ¢, then one only needs to change J, + J,
to —(Jz + Jy) for lower oa. The first QPT occurs when
the field lowers the energy of 3 and mixes it in the GS,
and the critical field can be obtained with the help of
the Wiener-Hopf technique [41] which is valid for large
Fermi points (Fermi surface in one dimension). Explicitly
we have

272 _
gH. = \/{‘é —2In2Jy — (Jo + Jy)* 1" (Ja

1672 .Jy 16 ’

(21)
which gives a good approximation if the value of J, + J,
is not very close to 8Jy. Further increase of the field will
lower the energy of @3 below ¢1 and @3, and will bring
them out of the GS one by one. The component variations
in the QPT are {SalaSDQ} - {501a8027903} - {9017903} -
{3}, where each arrow indicates the occurrence of a QPT.
Since 2 has zero magnetization, the total magnetization
also remains null in the gapped phase before the first QPT.
The zero-magnetization component o gets out of the GS
after Hyp if

Jo+J, < (41n2)Jo, (22)

while for
(4111 2)J0 < J,+ Jy < 8Jy, (23)

2 is brought out of the GS before H;p. These happen at
the second QPT with an approximate critical field

JZ,
16’

(24)
where 6 = Jyqy — (41n2)Jy. Expression (24) can give a
satisfactory approximation when the value of |J| is not
near 4.Jy. The exact critical field H.3 for the third QPT
is the same as H.y in (11). When the example in Figure 8
has numerical points H.1 = 4.244.Jy and H.o = 4.928Jy,
the expressions (21) and (24) provide the analytic results
H. =4.256Jy and Heo = 4.924J,.

In the Bethe ansatz energy (6), the one-particle leg-
part energy is ¢ = —Jo/(u? + 1/4), which can also be
transformed into a dispersion (k) = Jy(2 cos k — 2) when
the wave vector e* = (u—1i/2)/(u+1/2) is used. The part
under the Fermi surface decides the proportion (particle
number) of the component in the GS. When a component
enters or gets out of the GS, the round bottom of the dis-
persion will result in a quick change in the proportion of
the corresponding component. Therefore, singular behav-
ior can be observed at the QPT’s, including the cusp sin-
gularities [42,43], though the details of the singularity be-
havior are also influenced by the field-energy dependence

Hoo /|20 =20, +amag + -5 o
9 = 2 n
e 27F gty °" 22,

Magmetization M/Ms

0 4 8 12
Magnetic field gH/2 (unit: J,)

Fig. 8. Magnetizations in the z direction for a two-component
gapped ladder case, J; = Jy, = 2Jo, J. = 20Jy. The curves a,
b, ¢, d and e are plotted for different temperatures, T = 0, 2Jo,
4Jo, 6Jo and 20.Jy, respectively. In the gapped phase H < He1,
two components ¢; and 2 are involved in the ground state
(GS) (T = 0). The component @3 begins to enter the GS at the
critical point H.1, and reaches the same energy as @2 at Hos.
The component @2 gets out of the GS at the second critical
field H.2. The magnetization curves for different temperatures
do not go through the IP as in the one-component gapped
ladder case. When the field is applied in the z- or y-direction,
the GS magnetization will increase from the beginning due to
the gapless excitation in these directions.

and the structures of the Fermi seas at the critical point.
The phase between H.; and H.y has three components in
the GS, which involves an SU(3) Bethe ansatz since the
other component is not involved in the GS. Despite some
different details due to the field-energy dependence, the
cusp singularity is similar to the SU(3) spin chain [42], as
one can see from curve (a) of the example in Figure 8.

The IP in the one-component gapped ladder case will
not be invariant in the two-component ladder case. If the
component o gets out of the GS after Hrp, ¢2 is gapless.
Although the components 1 and 3 still have the same
proportion at the IP, any small temperature will excite
more components of ¢, and consequently decreases the
proportion of ¢1 and 3. Therefore, the temperature will
lower the total magnetization from that of the GS. If the
component o gets out of the GS before Hrp, given the
condition (23), the IP can hardly be invariant. Despite the
existence of a gap in excitations of @9 at Hrp, the gap is
actually quite small

Arps < (4 —In 2)J0, (25)

relative to the strong rung interaction. Thus a low tem-
perature of order Jy will still stimulate considerable ex-
citations to @9, and lower the magnetization at Hyp. We
illustrate this by the example in Figure 8.
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5 Summary

We have introduced a two-leg spin-1/2 ladder with a
general anisotropic XYZ rung interaction. In particular,
the exact rung state basis for this model was found. We
have studied the effect of the anisotropic rung interac-
tion by solving the integrable ladder in the context of the
thermodynamic Bethe ansatz and the high-temperature
expansion. Two kinds of gapped ladders were provided,
involving one and two components, respectively, in the
groundstate in the absence of the magnetic field. We have
analytically obtained all the corresponding critical fields
for the field-induced quantum phase transitions. The mag-
netizations and susceptibilities in different directions sep-
arate under the rung anisotropy. The magnetization in-
flection point is lowered from the half-saturation, and a
weak change in magnetization still remains after the last
quantum phase transition. The inflection point in the two-
component gapped ladder case is not invariant as in the
one-component gapped ladder case, due to field-induced
three-component competition or small excitation gap.
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